Lateral diffusion of membrane proteins.

نویسندگان

  • Sivaramakrishnan Ramadurai
  • Andrea Holt
  • Victor Krasnikov
  • Geert van den Bogaart
  • J Antoinette Killian
  • Bert Poolman
چکیده

We measured the lateral mobility of integral membrane proteins reconstituted in giant unilamellar vesicles (GUVs), using fluorescence correlation spectroscopy. Receptor, channel, and transporter proteins with 1-36 transmembrane segments (lateral radii ranging from 0.5 to 4 nm) and a alpha-helical peptide (radius of 0.5 nm) were fluorescently labeled and incorporated into GUVs. At low protein-to-lipid ratios (i.e., 10-100 proteins per microm(2) of membrane surface), the diffusion coefficient D displayed a weak dependence on the hydrodynamic radius (R) of the proteins [D scaled with ln(1/R)], consistent with the Saffman-Delbruck model. At higher protein-to lipid ratios (up to 3000 microm(-2)), the lateral diffusion coefficient of the molecules decreased linearly with increasing the protein concentration in the membrane. The implications of our findings for protein mobility in biological membranes (protein crowding of approximately 25,000 microm(-2)) and use of diffusion measurements for protein geometry (size, oligomerization) determinations are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lateral diffusion of membrane-spanning and glycosylphosphatidylinositol- linked proteins: toward establishing rules governing the lateral mobility of membrane proteins

In the plasma membrane of animal cells, many membrane-spanning proteins exhibit lower lateral mobilities than glycosylphosphatidylinositol (GPI)-linked proteins. To determine if the GPI linkage was a major determinant of the high lateral mobility of these proteins, we measured the lateral diffusion of chimeric membrane proteins composed of normally transmembrane proteins that were converted to ...

متن کامل

Lateral diffusion drives constitutive exchange of AMPA receptors at dendritic spines and is regulated by spine morphology.

Synapse specificity is a basic feature of synaptic plasticity, but it remains unclear how synapse-specific signaling is achieved if postsynaptic membrane proteins can diffuse laterally between synapses. We monitored movements of AMPA receptors (AMPARs) on the surface of mature neurons to investigate the role of lateral diffusion in constitutive AMPAR trafficking and to assess the influence of m...

متن کامل

Modulation of Lateral Diffusion in the Plasma Membrane by Protein Density

The rate of lateral diffusion of proteins over micron-scale distances in the plasma membrane (PM) of mammalian cells is much slower than in artificial membranes [1, 2]. Different models have been advanced to account for this discrepancy. They invoke either effects on the apparent viscosity of cell membranes through, for example, protein crowding [3, 4], or a role for cortical factors such as ac...

متن کامل

A model for membrane patchiness: lateral diffusion in the presence of barriers and vesicle traffic.

Patches (lateral heterogeneities) of cell surface membrane proteins and lipids have been imaged by a number of different microscopy techniques. This patchiness has been taken as evidence for the organization of membranes into domains whose composition differs from the average for the entire membrane. However, the mechanism and specificity of patch formation are not understood. Here we show how ...

متن کامل

Lateral diffusion of lipids in complex biological membranes.

Lateral diffusion of lipids in biological membranes may be influenced by polypeptides, proteins, and other nonlipid membrane constituents. Using concepts from scaled-particle theory, we extend the free-volume model for lipid diffusion to membranes having an arbitrarily large number of components. This theory clarifies the interpretation of the free-volume theory, better reproduces the free-area...

متن کامل

Lateral Diffusion of Proteins in Cell Membrane: The Anomalous Case

We present a method describing the lateral movement of proteins in cell membranes as observed in FRAP experiments. We extend earlier results derived for normal diffusion [1] to account for the case of anomalous subdiffusion. Our analytic closed forms are compared to computer simulations of anomalous diffusion and both show excellent agreement. The approach sheds light on the behavior of protein...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 131 35  شماره 

صفحات  -

تاریخ انتشار 2009